doi:10.3788/gzxb20124109.1028

Tm³⁺/Yb³⁺共掺碲酸盐玻璃的近红外 发光及能量传递机理

徐星辰,周亚训,王森,魏淑林,戴世勋,王训四

(宁波大学 信息科学与工程学院,浙江 宁波 315211)

摘 要:采用高温熔融法制备了组分为 TeO₂-ZnO-Na₂O 的 Tm³⁺离子单掺和 Tm³⁺/Yb³⁺ 共掺碲 酸盐玻璃,应用 Judd-Ofelt 理论计算分析了玻璃样品的强度参量 $\Omega_t (t=2, 4, 6)$,自发辐射跃迁几 率 A,荧光分支比 β和荧光辐射寿命 τ_{rad} 等光谱参量,测量得到了不同 Yb³⁺离子掺杂浓度下玻璃样 品的 Tm³⁺离子上转换发光谱.结果显示,在 980 nm 泵浦光激励下玻璃样品发射出强烈的近红外 上转换荧光.对 Tm³⁺离子上转换发光分析表明,强烈的 Tm³⁺离子近红外上转换发光主要来自于 Yb³⁺/Yb³⁺离子间的共振能量传递以及基于单声子和双声子辅助的 Yb³⁺/Tm³⁺离子间的非共振 能量传递过程,并进一步计算得到了声子贡献比和能量传递系数.最后,计算分析了Tm³⁺: ³F₄→ ³H₆ 能级间跃迁的 1.8 μm 波段吸收截面、受激发射截面和增益系数.研究表明,Yb³⁺/Tm³⁺共掺 TeO₂-ZnO-Na₂O 玻璃可以作为近红外波段固体激光器的潜在增益基质.

关键词:碲酸盐玻璃;Tm3+/Yb3+共掺;能量传递;上转换

中图分类号:TQ171.1⁺1 **文**献标识码:A

0 引言

稀土掺杂光学材料在信息处理、光纤通信、激光 技术、医学等领域有着广泛的应用,已给人类生产实 践带来了巨大的社会变革^[1-2].最近几年来,可见光 到近红外波段上转换发光的光器件发展,探索新型 和高性能的稀土掺杂上转换激光材料日益成为人们 研究的热点之一^[3-4].选择一个合适的玻璃基质对固 体上转换激光器的设计来说十分重要.碲酸盐玻璃 具有较高的稀土离子溶解性、相对较低的声子能量 (~750 cm⁻¹)、较高的折射率、良好的热稳定性和较 低的热膨胀系数,一直被认为是稀土离子掺杂和制 作光学器件的理想玻璃基质.因此,研究碲酸盐玻璃 作为可见和红外波段固体激光器的基质材料具有很 高的应用价值.

在稀土离子中,Tm³⁺离子以其非常丰富的能级 分布^[5],被认为是用于近红外光器件和上转换固体 激光器的优异稀土离子.然而,Tm³⁺离子在 980 nm 波段没有任何吸收峰,也就无法利用目前商用的 980 nm 激光二极管(Laser Diode, LD)作为抽运 源.为了克服这一缺点,通过引入 Yb³⁺离子作为 **文章编号:**1004-4213(2012)09-1028-8

Tm³⁺离子的敏化剂^[6],使处于激发态的Yb³⁺离子 再通过单声子或多声子协助下的非共振能量转移过 程将能量传递给Tm³⁺离子^[7],引起Tm³⁺离子的激 发,从而实现可见、近红外和中红外荧光发射.Yb³⁺ 离子在980 nm 波段具有较宽的吸收波长范围、较 大的吸收截面以及相对较长的激发态寿命,可以有 效吸收激励的泵浦光源,大大缩短激光工作物质的 长度.但目前,对于Tm³⁺离子和Yb³⁺离子间的能 量传递尤其对于能量传递机理的定量分析还比较欠 缺,需要进行更深入的研究以便进一步提高Tm³⁺ 离子的发光效率.

本文熔制了 Tm³⁺/Yb³⁺ 共掺组分为 TeO₂-ZnO-Na₂O的碲酸盐玻璃,通过测量不同 Yb³⁺离子 掺杂下 Tm³⁺离子的吸收光谱和上转换发光特性, 研究了 980 nm 泵浦光激励下 Yb³⁺离子对于 Tm³⁺ 离子近红外上转换发光特性的影响,着重研究分析 了 Yb³⁺和 Tm³⁺离子间的能量传递及其机理,并计 算得到了能量传递微观系数和声子贡献比.

1 实验

实验中,Tm³⁺/Yb³⁺共掺碲酸盐玻璃的摩尔组

基金项目:国家自然科学基金(No. 61178063)、浙江省研究生创新科研项目(No. YK2010048)、宁波市自然科学基金(No. 2010A610172)、 宁波大学王宽诚幸福基金和胡岚优秀博士基金资助

第一作者:徐星辰(1989一),男,硕士研究生,主要研究方向为稀土离子发光及能量传递. Email: 349510119@qq.com

导师(通讯作者):周亚训(1965-),男,教授,博士,主要研究方向为稀土共掺光纤放大器. Email: zhouyaxun@nbu.edu.cn 收稿日期:2012-03-08;修回日期:2012-06-07

分百分比为75TeO₂-(19-*x*)ZnO-5Na₂O-1.0Tm₂O₃*x*Yb₂O₃(*x*=0, 1.0, 1.5, 2.0, 2.5).其中,稀土 掺杂离子Tm³⁺和Yb³⁺分別由Tm₂O₃和Yb₂O₃组 分引入.根据Yb₂O₃组分含量的不同,玻璃样品依 次命名为TZN₀、TZN₁、TZN₂、TZN₃和TZN₄.样品 的制备原料TeO₂、ZnO、Na₂O、Tm₂O₃和Yb₂O₃均 为分析纯.制备中,精确称量玻璃样品原料10克,将 其混合搅拌均匀后倒入30mL的刚玉坩埚中,置于 950℃左右的硅碳棒电炉中熔融反应1h.然后,将 熔融态的液体倒入至预热到一定温度的铜模具中, 成型后迅速移入至精密温控马弗炉中进行退火,在 300℃附近保温2h后,自然冷却至室温.将退火后 的玻璃研磨抛光,制成10mm×10mm×1.0mm 大小的玻璃样品,用于各项光谱测试.

采用阿基米德法测量玻璃样品密度,用蒸馏水 作为浸没介质.采用韩国 SAIRON 公司 SPA-4000 型棱镜耦合仪测量玻璃样品折射率.采用美国 Perkin-Elmer-Lambda 950 UV/VIS/NIR 型分光光 度计测量玻璃样品的吸收光谱,测量范围为 400~ 2 200 nm.采用法国的 Jobin Yvon 公司的 Triax 型 荧光光谱仪测量玻璃样品的上转换荧光谱,采用波 长为 980 nm 的激光二极管(LD)作为泵浦源.所有 测试均在室温下进行.

2 结果与讨论

2.1 吸收光谱和 Judd-Ofelt 理论分析

实验测量到的 Tm^{3+} 离子单掺碲酸盐玻璃样品 (TZN₀)和 Tm^{3+}/Yb^{3+} 离子共掺碲酸盐玻璃样品 (TZN₄)在 400~2 200 nm 波长范围内的吸收光谱 如图1. 图中标出了各吸收峰所对应的稀土离子及 其激发态能级. 其中,464 nm、687 nm、793 nm、 1 210 nm、1 700 nm 波长处的 5 个吸收峰分别对应

图 1 Tm³⁺离子单掺和 Tm³⁺/Yb³⁺离子共掺 TZN₄ 玻璃 样品的吸收光谱

Fig. 1 Absorption spectra of $Tm^{\,3+}\mbox{-}doped$ and $Tm^{\,3+}\mbox{-}\mbox{Yb}^{3+}\mbox{-}$ codoped TZN_4 glasses

于 Tm^{3+} 由 基 态³ H₆ 能 级 到 激 发 态¹ G₄、³ F_{2,3}、 ³ H₄、³ H₅ 和³ F₄ 能级的吸收跃迁. 引入 Yb³⁺离子共 掺后,980 nm 波长附近的吸收得到显著增强,而其 它几个吸收峰的强度几乎没有变化,显然 980 nm 处吸收峰对应于 Yb³⁺离子的基态² F_{7/2}能级到激发 态² F_{5/2}能级的跃迁. 由吸收峰强度可知,Yb³⁺离子 在此波段内具有很高的吸收截面,因此可以将其作 为敏化剂,再通过 Yb³⁺与 Tm³⁺离子间的能量转移 实现将 Tm³⁺离子泵浦到激发态能级产生上转换发 光的目的.

对于掺杂玻璃中稀土离子 4*f*^N 电子组态间的 跃迁,一般常用 Judd-Ofelt 理论进行分析^[8-10].由图 1 实验测量到的吸收光谱,可以计算 Tm³⁺离子由基 态到各激发态能级的实验振子强度

$$F_{\rm exp} = \frac{2.303 {\rm m}c^2}{\pi {\rm e}^2 \, {\rm N} {\rm d}\lambda^2} \int {\rm OD}(\lambda) \, {\rm d}\lambda \tag{1}$$

式中,c为光速,m和 e 分别表示电子质量和电量,d为样品厚度,N为 Tm³⁺离子掺杂浓度,OD(λ)为吸收光密度.

根据 Judd-Ofelt 理论,稀土离子 $4f^{\mathbb{N}}$ 电子组态的 $|S,L,J\rangle$ 能级向 $|S',L',J'\rangle$ 能级发生电偶极吸收 跃迁的理论振子强度为

$$F_{\text{theory}}^{\text{ED}} = \frac{8\pi^2 \text{m}c}{3\hbar\lambda(2\hbar+1)} \left[\frac{(n^2+2)^2}{9n}\right] \times \sum_{\substack{t=2,t\\ s=2}} \Omega_t |\langle S, L, J | |U^{\lambda}| |S'L'J' \rangle|^2$$
(2)

式中, λ 为谱线中心波长,n 为在波长 λ 处的玻璃折 射率,h 为普朗克常量.S,L,J 分别对应某一特定 能级的自旋角动量量子数、轨道角动量量子数和总 角动量量子数. $|\langle S,L,J || U^{\lambda} || S'L'J' \rangle|$ 为约化矩 阵元,其数值与选用的基质材料无关. Ω_t (t=2,4,6) 为 Judd-Ofelt 强度参量,可以通过最小二乘法拟合 得到.表1是根据式(1)、(2)计算得到的 TZN₄ 玻 璃样品的理论和实验振子强度,可以看出同一跃迁 的理论和实验振子强度彼此非常吻合,说明计算得 到的 Judd-Ofelt 参量是可靠的.

表 1 TZN₄ 玻璃中的理论和实验振子强度值 Table 1 Measured and calculated values for the oscillator

strength in TZN₄ glass

Τ	λ/nm	Oscillator strength				
1 ransmons		Measured/($\times 10^{-}$	$^{\rm 6}$) Calculated/ ($\times 10^{-6}$)			
${}^{3}\mathrm{H}_{6} \rightarrow {}^{3}\mathrm{F4}$	1 700	2.479	2.479			
3 H ₆ \rightarrow 3 H ₄	793	2.897	2.896			
${}^{3}H_{6} \rightarrow {}^{3}F_{2,3}$	687	3.065	3.064			
$^{3}H_{6}\!\rightarrow^{1}\!G_{4}$	464	0.854	0.823			

表 2 是通过对吸收跃迁的实验振子强度与理论 振子强度进行最小二乘法拟合,得到的三个 Judd-Ofelt 强度参量 Ω_t (t=2,4,6). 拟合结果的均方根偏 差为 0.03×10⁻⁶,由式(3)得到

$$\Delta = \sqrt{\frac{\sum (F_{\rm exp} - F_{\rm theory}^{\rm ED})^2}{N_{\rm tran} - N_{\rm para}}}$$
(3)

式中, N_{tran} 和 N_{para} 分别为吸收跃迁数目和所要确定 的参量个数. 一般认为,强度参量 Ω_i (t=2,4,6)是与 玻璃基质材料结构密切相关,其中参量 Ω_2 是与玻 璃结构的对称性密切相关^[11]. 由表 2 可知,TZN 玻 璃中 Tm³⁺离子的 Ω_2 参量值要大于其在 ZBLAN 玻璃中的值,但小于其在硅酸盐、锗酸盐、磷酸盐和 氟磷酸盐玻璃中的值,说明重金属氧化物 TZN 玻 璃的非对称性较 ZBLAN 玻璃要高,但低于硅酸盐、 锗酸盐、磷酸盐和氟磷酸盐玻璃. Ω_4/Ω_6 的比值决定 了基质材料的光谱品质^[12].由表 2 可以看出,除了 氟磷酸盐玻璃的 Ω_4/Ω_6 参量的比值最高以外,TZN 玻璃与其他几种玻璃基质 Ω_4/Ω_6 参量的比值大体 相当,但考虑到 TZN 玻璃优异的稳定性,可以说明 Tm³⁺/Yb³⁺共掺 TZN 玻璃是一种性能优良的光学 玻璃.

表 2 各种玻璃基质中 Tm³⁺离子的 Ω_i (*t*=2, 4, 6)参量 Table 2 The intensity parameters of Ω_i (*t*=2, 4, 6) in the different glasses

Tuble 2 The intensity parameters of $S_2(V = 1, 1, 0)$ in the uniterent glasses							
Glass host	$\Omega_2/(imes 10^{-20}~{ m cm}^2)$	$\Omega_4/(imes 10^{-20}~{ m cm}^2)$	$\Omega_6/(imes 10^{-20}~{ m cm}^2)$	${oldsymbol{\varOmega}}_4/{oldsymbol{\varOmega}}_6$	Ref.		
ZBLAN	1.96	1.36	1.16	1.17	13		
Silica	6.23	1.91	1.36	1.40	13		
Germanate	5.55	2.03	1.26	1.61	14		
Phosphate	5.63	1.75	1.11	1.58	15		
Fluorphosphate	4.12	1.47	0.72	2.04	13		
TZN_4	2.61	1.19	1.05	1.13	This paper		

根据表 2 中计算得到的三个 Judd-Ofelt 强度参 量值,利用 Tm³⁺离子发射跃迁的约化矩阵元(列于 表 3 中),依据下式可以进一步计算得到 Tm³⁺离子 各能级的自发辐射跃迁几率

$$A[(S,L)J;(S'L')J'] = A_{\rm ed} + A_{\rm md} = \frac{64\pi^4 e^2}{35\pi^3(2L+1)} \times \left[\frac{n(n^2+2)^2}{9}S_{\rm ed} + n^3S_{\rm md}\right]$$
(4)

式中, S_{ed}和 S_{md}分别表示电偶极辐射跃迁强度和磁 偶极辐射跃迁强度, A_{ed}和 A_{md}分别表示电偶极辐射 跃迁几率和磁偶极辐射跃迁几率. S_{md}可以表示为

$$S_{\rm md} = \left(\frac{\hbar}{2mc}\right)^2 |\langle S, L, J| | L + 2S| |S'L'J'\rangle|^2 \quad (5)$$

只有当满足选择跃迁定则 $\Delta S = \Delta L = 0$, $\Delta J = 0$, ± 1 时, $|\langle S, L, J || L + 2S || S'L'J' \rangle|^2$ 项才是非 零的. 这样, 根据式(4)进一步计算得到 Tm³⁺离子 各能级的辐射寿命和荧光分支比

$$\tau_{\rm rad} = \{\sum_{S',L',J'} A \left[(S,L)J; (S',L')J' \right] \}^{-1}$$
(6)

 $\beta_{JJ'} = \frac{A[(S,L)J;(S',L')J']}{\sum A[(S,L)J;(S',L')J']}$ (7)

计算得到的 Tm³⁺离子各能级自发辐射寿命、 自发辐射跃迁几率和荧光分支比见表 3. 约化矩阵 元与基质材料的选择几乎是无关的,因此表中的矩 阵元直接采用了其他文献中的参量值[13].由表3可 知,Tm³⁺: ${}^{3}F_{4}$ → ${}^{3}H_{6}$ 能级的自发辐射跃迁几率达 到了 314.7 s⁻¹,要远远高于锗酸盐和硅酸盐玻璃 中[16].稀土离子的自发辐射跃迁几率与玻璃基质的 折射率密切相关.玻璃基质的折射率越高,掺杂其中 的稀土离子的自发辐射跃迁几率就越高,因此很容 易推断出高折射率的 TZN 玻璃(~2.0)能获得较 高的自发辐射跃迁几率.从表中还可以看出,对应于 Tm^{3+} : ³H₄→³H₆能级之间的荧光分支比和自发 辐射几率分别达到了 90.6%和1 995.7 s⁻¹,要远高 于 $^{3}H_{4}$ 能级向其他下能级跃迁所对应的参量值,预 示着 Tm³⁺/Yb³⁺共掺 TZN 玻璃能够产生较强烈的 近红外荧光发射.

表 3 TZN₄ 玻璃中 Tm³⁺离子的自发辐射寿命、跃迁几率和荧光分支比 Table 3 Calculated radiative rates, lifetimes, and branching ratios of Tm³⁺ in TZN₄ glass

			,	,		8		
Transition	$\ U^{\scriptscriptstyle (2)}\ ^2$	$\ U^{(4)}\ ^2$	$\ U^{(6)}\ ^2$	λ/nm	$A_{ m ed}/{ m s}^{-1}$	$A_{\rm md}/{ m s}^{-1}$	β	$ au_{ m rad}/\mu{ m s}$
${}^{3}\mathrm{F}_{4} \rightarrow {}^{3}\mathrm{H}_{6}$	0.537 4	0.726 1	0.238 2	$1\ 785$	314.7		1	3 178
${}^{3}\mathrm{H}_{5} \rightarrow {}^{3}\mathrm{H}_{6}$	0.107 4	0.231 4	0.638 3	$1\ 200$	412.8	137.3	0.978	1 179
${}^3\mathrm{F}_4$	0.091 3	0.128 0	0.927 6	$4 \ 315$	12.1		0.022	
${}^{3}\operatorname{H}_{4} \rightarrow {}^{3}\operatorname{H}_{6}$	0.237 2	0.109 0	0.594 7	788	1 995.7		0.906	454
$^3\mathrm{F}_4$	0.129 2	0.130 1	0.205 5	1 490	152.2		0.069	
3 H $_{5}$	0.013 1	0.478 6	0.009 3	2 290	29.7	24.1	0.025	
${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}$	0.000 0	0.316 4	0.849 7	685	3 608.9		0.863	239
$^{3}\mathrm{F}_{4}$	0.002 5	0.000 5	0.167 0	1 130	89.9	160.9	0.060	
3 H $_{5}$	0.628 6	0.345 8	0.000 0	1 550	320.6		0.076	
3 H ₄	0.082 1	0.3536	0.285 0	5 552	3.9		0.001	

2.2 上转换谱及发光机理分析

在 980 nm 的 LD 泵浦下,实验测量到的 Tm³⁺/ Yb³⁺ 共掺 TZN*x* (*x*=1, 2, 3, 4) 玻璃中 Tm³⁺离子 的上转换发光谱如图 2. 对于 Tm³⁺离子单掺的 TZN0 玻璃而言,由于 Tm³⁺离子在 980 nm 附近没

图 2 Tm³⁺/Yb³⁺共掺 TZN 玻璃的上转换发光谱,插图是 Tm³⁺: ¹G₄→³H₆能级的上转换光谱

Fig. 2 Upconversion emission spectra of Tm^{3+}/Yb^{3+} -codoped TZN glasses. The inset is the Upconversion emission spectra of Tm^{3+} : ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$

有相匹配的吸收能级存在,因此无法吸收激励的泵 浦光,也就观察不到上转换荧光.但在玻璃中引入对 980 nm 泵浦光具有强烈吸收的敏化剂 Yb³⁺离子, 通过 Yb³⁺离子向 Tm³⁺离子的能量传递,Tm³⁺/ Yb³⁺共掺的 TZN 玻璃实现了上转换荧光发射.由 图 2 上转换发光谱可见,存在着一个强烈的位于 796 nm波长附近的近红外上转换发光和一个微弱的 位于 477 nm 波长附近的可见蓝光上转换发射峰(参 见插图),分别是由 Tm³⁺离子³H₄→³H₆和 ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ 能级间的辐射跃迁产生.近红外上转换发 光(796 nm)的峰值强度要远远大于可见蓝光 (477 nm)的峰值强度,此结果与荧光分支比和自发 辐射跃迁几率的结果分析相吻合.由于 Yb³⁺ → Tm³⁺离子间的能量传递,Tm³⁺离子的上转换发光 强度随着掺杂 Yb³⁺离子浓度的增加而增强.图 3 是

图 3 TZN 玻璃中 Tm³⁺和 Yb³⁺能级及上转换发光示意图 Fig. 3 The schematic diagram of Tm³⁺, Yb³⁺ levels and the upconversion emission process

TZN 玻璃中 Tm³⁺和 Yb³⁺能级及上转换发光示意 图. 通过图 1 的吸收光谱和图 3 的能级图, 可以对 Tm³⁺/Yb³⁺共掺 TZN 玻璃中 Tm³⁺离子的上转换 发光机理作如下分析:首先,在 980 nm 泵浦光激励 下,Yb³⁺离子首先被激发至²F_{5/2}能级,然后处于激 发态 $^{2}F_{5/2}$ 能级上的 Yb³⁺ 离子通过能量传递过程 (ET1)将能量传递给 Tm³⁺离子,这样 Tm³⁺离子从 基态³H₆能级跃迁到³H₅能级.但由于 Yb³⁺: ${}^{5}F_{5/2}$ 能级和 Tm³⁺:³H₅能级之间存在着 1 500 cm⁻¹左 右的能量失配,因此该过程是一个声子参与辅助的 能量传递过程,需要1~2个声子参与,该能量传递 过程可以表示为方程式:Yb³⁺:⁵F_{5/2}+Tm³⁺: ${}^{3}H_{6} \rightarrow Yb^{3+} : {}^{5}F_{7/2} + Tm^{3+} : {}^{3}H_{5} + 1 \sim 2$ phonons. 然后,处于激发态³H₅ 能级上的 Tm³⁺离子经多声子 弛豫过程迅速返回到³F₄能级,再通过与Yb³⁺离子 相似的能量传递过程(ET₂): Yb³⁺: $F_{5/2}$ + $Tm^{3+}: {}^{3}F_{4} \rightarrow Yb^{3+}: {}^{5}F_{7/2} + Tm^{3+}: {}^{3}F_{2}$ 或激发态 吸收(ESA)过程,在³F₂能级上形成大量的 Tm³⁺离 子数布居.最后,³F₂能级上的Tm³⁺离子经多声子 弛豫跃迁返回到³H₄能级.³H₄能级上的大部分 Tm³⁺离子跃迁返回到基态³H。能级从而发射出强 烈的 796 nm 的近红外荧光;而另外少部分 Tm³⁺离 子则与 Yb³⁺离子再次通过能量传递过程(ET3): Yb^{3+} : ${}^{5}F_{5/2} + Tm^{3+}$: ${}^{3}H_{4} \rightarrow Yb^{3+}$: ${}^{5}F_{7/2} + Tm^{3+}$: ¹G₄,在¹G₄能级上形成粒子数布居,进而跃迁返回 到基态³H。能级形成微弱的 477 nm 蓝光发射.

2.3 Yb³⁺/Tm³⁺离子间的能量传递机理

分析可知,在 Tm³⁺离子单掺的碲酸盐玻璃中 引入 Yb³⁺离子进行共掺,通过 Yb³⁺→Tm³⁺离子间 相应能级的能量传递过程,可以实现 Tm³⁺离子强 烈的近红外上转换发射.因此,对 Yb³⁺/Tm³⁺离子 间的能量传递机理作进一步的分析很有必要.

稀土离子间的能量传递机理一般是基于电偶极-电偶极相互作用,按照 Dexter 的能量传递理论^[17],两个相距为 *R* 的电偶极子发生相互作用进行能量传递时,其能量传递几率可以表示为

$$W_{\rm D-A} = \frac{C_{\rm D-A}}{R^6} = \frac{R_{\rm C}^6}{R^6 \tau_{\rm D}}$$
(8)

式中, τ_{D} 表示施主离子(D)的能级寿命, C_{DA} 表示施 主离子与受主离子(A)间的能量传递微观参量,而 R_{c} 则表示发生能量传递时的临界半径,定义为^[17]

$$R_{\rm C}^{6} = \frac{6c\tau_{\rm D}}{(2\pi)^{4}n^{2}} \frac{g_{\rm low}^{\rm D}}{g_{\rm up}^{\rm D}} S_{\rm DA}(\lambda)$$
(9)

 $S_{\rm DA}(\lambda) = \int \sigma_{\rm emis}^{\rm D}(\lambda) \ \sigma_{\rm abs}^{\rm A}(\lambda) \, d\lambda \tag{10}$

式中, g_{up}^{D} 和 g_{low}^{D} 分别表示施主离子上、下能级的简并度,c是光速,n是玻璃基质折射率, $\sigma_{abs}^{A}(\lambda)$ 和 $\sigma_{emis}^{D}(\lambda)$

分别表示受主离子的吸收截面和施主离子的受激发 射截面, S_{DA}(λ)表示重叠积分.

对于 Yb³⁺离子⁵F_{5/2}能级与 Tm³⁺离子³H₆能级 间的能量传递,计算得到的 TZN₄ 玻璃样品中 Yb³⁺ 离子⁵F_{5/2}↔⁵F_{7/2}能级间的吸收截面、受激发射截面 以及 Tm³⁺离子³H₆→³H₅能级间的吸收截面如图 4. 其中, Tm³⁺离子、Yb³⁺离子的吸收截面以及 Yb³⁺离子的受激发射截面是根据测量到的图 1 吸 收光谱,分别利用 McCumber 和 Beer-Lambert 理论 依据下式计算得到^[18]

$$\sigma_{a}(\lambda) = \frac{2.303 \text{OD}(\lambda)}{N \cdot L} \tag{11}$$

$$\sigma_{e}(\lambda) = \sigma_{a}(\lambda) \frac{Z_{1}}{Z_{u}} \exp\left(\frac{E_{zl} - hc\lambda^{-1}}{kT}\right)$$
(12)

式中,L为玻璃样品的厚度,N为稀土离子掺杂浓度. Z_1 和 Z_u 分别表示稀土离子低能级和高能级的配分函数, E_{al} 是零线能量,其物理意义是:保持温度不变,把一个离子从低能级激发到高能级时所需的自由能^[19].对于Yb³⁺离子, Z_1/Z_u 的比值可取为1.3^[20].而h,c,k和T则分别表示普朗克常量、光速、波尔兹曼常量和室温温度.

由图 4 可见, Yb³⁺离子在 980 nm 波长附近具 有较大的吸收截面和受激发射截面.较大的吸收截 面能够提高对泵浦光子的吸收,从而提高泵浦效率 以及增强 Tm³⁺离子的上转换发光.而受激发射截 面是衡量增益材料激光性能优劣的一个重要参量, 它随着玻璃基质折射率的增大而增大,因为高折射 率能够增强稀土离子格点处的局域晶体场,从而导 致较强的辐射跃迁.

图 4 Yb³⁺ 离子的吸收截面、受激发射截面和 Tm³⁺ 离子的 吸收截面

Fig. 4 The absorption and emission cross-sections of $\rm Yb^{3+}$, and the absorption cross-section of $\rm Tm^{3+}$

同时看到, Yb^{3+} 离子⁵ $F_{5/2}$ →⁵ $F_{7/2}$ 能级间的发射 跃迁与 Tm^{3+} 离子³ H_6 →³ H_5 能级间的吸收跃迁存 在着一定的能量失配,因此, Yb^{3+}/Tm^{3+} 离子间的 能量传递是一种非共振的即需要声子参与辅助的能 量传递过程.对于声子参与辅助情形下的能量传递 过程,按照 Miyakawa 和 Dexter 理论^[18],式(11)中 的重叠积分应修正为一系列施主离子(这里是 Yb³⁺)的 *m* 声子发射边带与受主离子(这里是 Tm³⁺)的 *k* 声子吸收边带间的重叠积分的叠加,即

 $S_{\text{DA}}(\lambda) = \sum_{N=0k=0}^{\infty} \int_{\sigma_{\text{emis}}^{D}} \sigma_{\sigma_{\text{emis}}(m-\text{phonon})}^{D}(\lambda) \sigma_{\text{abs}(k-\text{phonon})}^{A}(\lambda) d\lambda$ (13) 式中,N 是能量传递过程中参与的声子数(N=m+ k), $\sigma_{\text{emis}(m-\text{phonon})}^{D}$ 和 $\sigma_{\text{abs}(k-\text{phonon})}^{A}$ 分别表示施主离子的 m 声子发射边带和受主离子的 k 声子吸收边带,它们 可以由测量到的施主离子零声子发射截面和受主离 子零声子吸收截面得到^[21]

$$\sigma_{\text{emis}(m\text{-phonon})}^{\text{D}}(\lambda) = e^{\left[-(2\bar{n}+1)s_0\right]} \frac{s_0^m}{m!} (\bar{n}+1)^m \cdot \sigma_{\text{emis}(\text{expt})}^{\text{D}}(\lambda_m^+)$$
(14)

$$\sigma_{\mathrm{abs}(k\text{-phonon})}^{\mathrm{A}}(\lambda) = \mathrm{e}^{\left[-2\bar{n}s_{0}\right]} \frac{s_{0}^{k}}{k!} (\bar{n})^{k} \sigma_{\mathrm{abs}(\mathrm{expt})}^{\mathrm{A}} (\lambda_{k}^{\mathrm{-}}) \quad (15)$$

式中, s_0 是 Huang-Rhys 因子,其值取为 0.31, $n = 1/(e^{b\omega_0/kT} - 1)$ 表示温度 T 时的声子平均占有率. $\lambda_m^+ = [1/(1/\lambda - mh\omega_0)]$ 表示施主离子发射 m 声子后 对应的截面波长, $\lambda_k = [1/(1/\lambda + kh\omega_0)]$ 表示受主离 子吸收 k 声子后对应的截面波长, $h\omega_0$ 是玻璃基质 最大声子能量.如果忽略能量传递过程中受主离子 的声子吸收(k=0),只考虑施主离子的声子发射 (m=N),则对于声子辅助情形下的能量传递过程, 可以得到施主离子与受主离子间的能量传递几 率^[21]

$$W_{\text{D-A}} = \frac{6c}{(2\pi)^4 n^2 R^6} \frac{g_{\text{low}}^{\text{D}}}{g_{\text{up}}^{\text{D}} \sum_{N=0}^{\infty}} e^{\left[-(2\pi+1)s_0\right]} \frac{s_0^{N}}{N!} (\bar{n}+1)^{N} \times \int \sigma_{\text{emis(expt)}}^{\text{D}} (\lambda_N^+) \sigma_{\text{abs(expt)}}^{\text{A}} (\lambda) d\lambda$$
(16)

能量传递微观参量

$$C_{\text{D-A}} = \frac{6c}{(2\pi)^4 n^2} \frac{g_{\text{low}}^{\text{D}}}{g_{\text{up}}^{\text{D}}} \sum_{N=0}^{\infty} e^{[-(2\pi)^2 + 1)s_0]} \frac{s_0^N}{N!} (\bar{n}+1)^N \times \int \sigma_{\text{emis(expt)}}^{\text{D}} (\lambda_N^+) \sigma_{\text{abs(expt)}}^{\text{A}} (\lambda) \, d\lambda$$
(17)

以及临界半径

$$R_{\rm C}^6 = C_{\rm D-A} \tau_{\rm D} \tag{18}$$

表4列出了根据式(16)-(18)计算得到的 TZN₄ 玻璃样品中 Yb³⁺→Tm³⁺和 Yb³⁺→Yb³⁺离子间的 各项能量传递参量.由表可知,Yb³⁺→Yb³⁺离子间 的能量传递主要是通过共振能量传递完成的,基本 上不需要声子参与协助,因而具有较大的能量传递 微观参量 C_{DD} ,这是由于碲酸盐玻璃中 Yb³⁺离子具 有较大的吸收截面和受激发射截面,同时两者相互 间重叠得很为理想的缘故(图 4).能量传递微观参 量值较大,意味着 Yb³⁺离子间的能量传递是比较容 易发生的,这有利于将已吸收泵浦光子处于激发态 的 Yb³⁺离子将其能量传递给临近 Tm³⁺离子的基态 Yb³⁺离子上,从而使后者参与下一步 Yb³⁺→Tm³⁺ 离子间的能量传递,提高 980 泵浦下 Tm³⁺离子的 激发效率并最终提高其发光效率.但由图 4 可知, Yb³⁺离子的受激发射截面谱与 Tm³⁺离子的吸收截 面谱之间几乎没有重叠,因此两者之间的能量传递 需要声子参与协助.计算结果显示,Yb³⁺→Tm³⁺离 子间的能量传递过程是由单声子和双声子共同参与 协助完成的,它们分别贡献了 38.9%和 61.1%左右 的比例.由于需要声子参与协助完成,因此在Yb³⁺→ Tm³⁺离子能量传递过程中,表征能量传递过程强弱 的能量传递微观参量 C_{Yb-Tm} 的值要明显小于Yb³⁺→ Yb³⁺离子能量传递过程中的微观参量 C_{Yb-Yb} 的值. 这意味着,对于Tm³⁺/Yb³⁺共掺TZN玻璃而言,提 高Yb³⁺→Tm³⁺离子间的能量传递效率,对于进一 步提高980泵浦下Tm³⁺离子的发光效率和发光强 度是非常关键的.

表 4 TZN₄ 玻璃样品中 Tm³⁺ 和 Yb³⁺离子的能量传递参量 Table 4 Energy transfer parameters in Tm³⁺/Yb³⁺-codoped TZN₄ glass

Energy ransfer	N(numbe (% pho	er of pho onon ass	onons)/ isted)	$C_{ m Yb-Tm} (10^{-40} \ { m cm}^6/{ m s})$	$C_{\rm Yb-Yb} (10^{-40}~{ m cm}^6/{ m s})$	$R_{ m c}/{ m nm}$
$Yb^{3+} \rightarrow Tm^{3+}$	0 0 3	1 38.9%	2 61.1%	4.54	_	0.85
$Yb^{3+} \rightarrow Yb^{3+}$	0 96.7%	-	1	_	73.37	1.35

2.4 Tm³⁺离子 1.8 μm 波段处的增益系数谱

近年来,随着高功率二极管抽运激光器的发展 和商品化以及光纤激光器的迅速发展,在空气污染 控制、遥感化学传感器、地形测量等领域有着十分广 泛应用的近、中红外稀土荧光发射研究也得到日益 重视,而 Tm³⁺离子³F₄→³H₆能级间的 1.8 μ m 波段 的荧光辐射跃迁是实现近红外荧光发射的主要途径 之一.图 5 是计算得到的 TZN₄ 玻璃样品中 Tm³⁺离 子³F₄↔³H₆能级之间的吸收截面和受激发射截面 谱,表 5 列出了一些玻璃基质中 Tm³⁺离子的受激发 射峰值截面(σ_e^{peak}).由表 5 可知,本文研制的 TZN₄ 玻璃中 Tm³⁺离子³F₄→³H₆能级间的受激发射峰值 截面达到了 5.86×10⁻²¹ cm²,远高于氟化物和氟磷

图 5 TZN₄ 玻璃中 Tm³⁺离子³F₄↔³H₆能级间跃迁的吸收 和发射截面

Fig. 5 The absorption and stimulated emission cross-sections between $^3{\rm F}_4 \leftrightarrow ^3{\rm H}_6$ transitions of ${\rm Tm}^{3+}$

表 5 不同玻璃基质中 Tm³⁺离子³ H₆ 跃迁的受激发射峰值截面 σ_e^{peak} , 自发辐射寿命 τ_{rad} 和 $\sigma_e^{\text{peak} \times \tau_{\text{rad}}}$ Table 5 The peak cross-section σ_e^{peak} , radiative lifetime τ_{rad} and product of $\sigma_e^{\text{peak} \times \tau_{\text{rad}}}$ in the different glasses

Glass host	$\sigma_{ m e}^{ m peak}/(imes 10^{-21}~{ m cm}^2)$	$ au_{ m rad}/ m ms$	$\sigma_{\rm e}^{\rm peak} imes au_{\rm rad} / (imes 10^{-21} \ { m cm}^2. { m s})$	Ref.
Fluorophosphate	2.50	1.80	4.50	22
Bismuthate	6.70	2.60	17.40	22
Fluoride	2.31	11.10	25.64	23
TZN_4	5.86	3.18	18.63	This paper

酸盐玻璃.较高的自发辐射跃迁几率和玻璃基质的 折射率决定了 Tm³⁺离子较大的发射截面,有利于 1.8 μ m 波段的荧光发射.另外,稀土离子的受激发 射峰值截面和辐射寿命的乘积($\sigma_e^{peak} \times \tau_{rad}$)大小常用 来衡量掺杂玻璃的增益品性,它们的乘积越大,其放 大品性越好.同样看到,TZN 玻璃中 $\sigma_e^{peak} \times \tau_{rad}$ 的乘 积大于氟磷酸盐和铋酸盐玻璃,稍低于氟化物玻璃. 由此可知,Tm³⁺离子掺杂的 TZN 玻璃作为 1.8 μ m 波段的近红外增益介质也有望获得较高的增益 输出.

根据图 5 的 Tm³⁺离子吸收截面和受激发射截

面谱,可以进一步计算得到 Tm^{3+} 离子 $^{3}F_{4} \rightarrow ^{3}H_{6}$ 能级间跃迁的增益系数谱

 $G(\lambda, P) = N[P\sigma_{em}(\lambda) - (1-P)\sigma_{abs}(\lambda)]$ (19) 式中,N表示 Tm³⁺离子的掺杂浓度,P表示 Tm³⁺ 离子³F₄能级上粒子数占掺杂总数的比例.能级的 增益系数谱决定了作为激光器增益介质的 Tm³⁺离 子掺杂玻璃的信号增益谱形状和放大特性.图 6 是 在不同的³F₄能级粒子数分布情形下,得到的 TZN₄ 玻璃样品中 Tm³⁺离子³F₄能级的增益系数谱.由图 可见,在较低的粒子数分布下,碲酸盐玻璃中 Tm³⁺ 离子³F₄→³H₆能级间跃迁就可获得正的增益系数, 且其增益系数随着反转粒子数的增加而迅速增大, 这一特性进一步说明 Tm^{3+}/Yb^{3+} 共掺 TZN 玻璃可 以作为 1.8 μ m 波段近红外激光发射的优良增益 介质.

3 结论

研究表明,在 980 nm 泵浦光激励下,Yb³⁺/ Tm³⁺共掺碲酸盐玻璃能够发射出强烈的 796 nm 近红外上转换荧光和微弱的 477 nm 可见上转换蓝 光. 随着 Yb³⁺离子掺杂浓度的增加上转换荧光强度 也随之增强,这主要源自于 Yb³⁺/Yb³⁺、Yb³⁺/ Tm³⁺离子间的能量传递过程.进一步分析表明, Yb³⁺/Yb³⁺离子间的能量传递主要是通过共振能量 传递过程实现的,而 Yb³⁺/Tm³⁺离子间的能量传递 则是由单声子和双声子辅助共同完成的,两者贡献 分别为 38.9% 和 61.1%, 计算得到的 Yb³⁺/Yb³⁺、 Yb^{3+}/Tm^{3+} 离子间的能量传递微观参量分别为 73.37×10⁻⁴⁰ cm⁶/s和 4.54×10⁻⁴⁰ cm⁶/s. 同时,进 一步研究了 Tm^{3+} 离子³F₄→³H₆ 能级跃迁的 1.8 μm波段近红外光谱特性,其受激发射峰值截面 为 5.86×10⁻²¹ cm²,增益品质因子达到了 18.63× 10⁻²¹ cm². 以上研究表明, Tm³⁺/Yb³⁺ 共掺 TZN 玻 璃可以作为 0.8 μm 近红外波段上转换固体激光器 和 1.8 μm 波段近红外固体激光器的潜在增益 基质.

参考文献

 [1] WANG Da-gang, ZHOU Ya-xun, DAI Shi-xun, et al. Thermal stability and spectral properties of the Er³⁺/Ce³⁺ codoped TeO₂-Bi₂O₃-TiO₂ glasses[J]. Acta Photonica Sinica, 2010, **39**(3): 464-469.
 王大刚,周亚训,戴世勋,等. Er³⁺/Ce³⁺ 共掺 TeO₂-Bi₂O₃-

TiO₂ 玻璃的热稳定性和光谱特性研究[J]. 光子学报, 2010, **39**(3): 464-469.

[2] WANG Guo-nian, DAI Shi-xun, ZHANG Jun-jie, et al. Upconversion emissions in Yb³⁺-Tm³⁺-doped tellurite glasses exited at 976nm[J]. Journal of Materials Science, 2007, 42 (3): 747-751.

- [3] YANG Jian-hu, DAI Shi-xun, WEN Lei, et al. Spectroscopic properties of erbium-doped bismuth-based glass [J]. Acta Photonica Sinica, 2002, 31(11): 1382-1386.
 杨建虎,戴世勋,温磊,等. 掺铒铋酸盐玻璃的光谱性质研究 [J]. 光子学报, 2002, 31(11): 1382-1386.
- [4] ZHANG Q Y, LI T, JIANG Z H. 980 nm laser-diode-excit-ed intense blue upconversion in Tm³⁺/Yb³⁺-codoped gallatebismuth-lead glasses[J]. Applied Physics Letters, 2005, 87 (17): 171911-171913.
- [5] LU Yan-ling, YANG Yang, WANG Jun, et al. Spectral properties of Tm: YAP laser crystal[J]. Chinese Journal of Lasers, 2006, 33(7): 968-972.
 陆燕玲,杨扬,王俊,等. Tm: YAP 激光晶体光谱参量的计

算[J]. 中国激光, 2006, **33**(7): 968-972.

[6] HE Chun-feng, ZHAO Dan, QIN Guan-shi, et al. Multiphoton UV upconversion luminescence of Yb³⁺ and Tm³⁺ codoped ZBLAN glass[J]. Acta Photonica Sinica, 2011, 40(1): 61-63.

何春凤,赵丹,秦冠仕,等. Tm³⁺/Yb³⁺共掺杂 ZBLAN 玻璃 的多光子紫外上转换发光[J]. 光子学报,2011,40(1):61-63.

- [7] NIE Qiu-hua, LI Xu-jie, DAI Shi-xun, et al. Energy transfer and upconversion luminescence in Tm³⁺/Yb³⁺ co-doped lanthanum - zinc - lead - tellurite glasses[J]. Journal of Luminescence, 2008, 128(1): 135-141.
- [8] JUDD B R. Optical absorption intensities of rare-earth ions
 [J]. Physical Review, 1962, 127(3): 750-761.
- [9] OFELT G S. Intensities of crystal spectra of rare-earth ions
 [J]. Journal of Chemical Physics, 1962, 37(3):511-520.
- [10] CARNALL W T, FIELDS P R, RAJNAK K. Electronic energy levels in the trivalent lanthanide aquo ions[J]. The Journal of Chemical Physics, 1968, 49(10): 4424-4442.
- [11] JORGENSEN C K, REISFELD R. Judd-Ofelt parameters and chemical bonding [J]. Journal of the Less Common Metals, 1983, 93(1): 107-112.
- [12] WATEKAR P R, JU S, HAN W T. Optical properties of Ho-doped alumino-germano-silica glass optical fiber [J]. Journal of Non-Crystalline Solids, 2008, 354(14): 1453-1459.
- [13] ZHANG Q, CHEN G, ZHANG G, et al. Spectroscopic properties of Ho³⁺/Yb³⁺ codoped lanthanum aluminum germanate glasses with efficient energy transfer[J]. Journal of Applied Physics, 2009, 106(11): 113102-113106.
- [14] BALDA R, LACHA L M, FERNANDEZ J, et al. Optical spectroscopy of Tm³⁺ ions in GeO₂-PbO-Nb₂O₅ glasses[J]. Optical Materials, 2005, 27(11): 1771-1775.
- [15] KERMAOUI A, PELLE F. Synthesis and infrared spectroscopic properties of Tm³⁺-doped phosphate glasses
 [J]. Journal of Alloys and Compounds, 2009, 469(1-2): 601-608.
- [16] PENG B, IZUMITANI T. Optical properties, fluorescence mechanisms and energy transfer inTm³⁺, Ho³⁺ and Tm³⁺-Ho³⁺ doped near-infrared laser glasses, sensitized by Yb³⁺
 [J]. Optical Materials, 1995, 4(6): 797-810.
- [17] YAN Y C, FABER A J, WAAL H D. Luminescence quenching by OH groups in highly Er-doped phosphate glasses[J]. Journal of Non-Crystalline Solids, 1995, 181 (3): 283-290.
- [18] MCCUMBER D E. Theory of phonon-terminated optical masers[J]. Physical Review, 1964, 134(2A): A299-A306.
- [19] CHEN Yu-jin, Huang Yi-dong, LUO Zun-du. Spectroscopic properties of Yb³⁺ in bismuth borate glasses[J]. Chemical

and Physics Letters, 2003, 382(3-4): 481-488.

- [20] ZHANG Qiang, CHEN Guo-rong, ZHANG Guang, et al. Infrared luminescence of Tm³⁺/Yb³⁺ codoped lanthanum aluminum germanate glasses [J]. Journal of Applied Physics, 2010, 107(2): 023102-023107.
- [21] XU Jun, SU Liang-bi, LI Hong-jun, *et al.* High quantum fluorescence yield of Er^{3+} at 1. 5μ m in an Yb³⁺, Ce³⁺-codoped CaF₂ crystal[J]. *Optical Materials*, 2007, **29**(8):

932-935.

- [22] FAN Hui-yan, GAO Guo-jun, WANG Guo-nian, et al. Tm^{3+} doped Bi_2O_3 -GeO₂-Na₂O glasses for 1. 8µm fluorescence[J]. Optical Materials, 2010, **32**(5): 627-631.
- [23] WALSH B M, BARNES N P, PETROS M, et al. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm³⁺ and Ho³⁺ in YLiF₄ and LuLiF₄
 [J]. Journal of Applied Physics, 2004, 95(7): 3255-3271.

Near-infrared Emission and Energy Transfer Mechanism of Tm³⁺/Yb³⁺ Codoped Tellurite Glasses

XU Xing-chen, ZHOU Ya-xun, WANG Sen, WEI Shu-lin, DAI Shi-xun, WANG Xun-si (College of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China)

Abstract: Tm^{3+} single doped and $\text{Tm}^{3+}/\text{Yb}^{3+}$ codoped tellurite glasses with the composition of TeO₂-ZnO-Na₂O were prepared by melt-quenching method. The intensity parameters Ω_i (t=2, 4, 6), spontaneous radiative transition rates A, fluorescence branching ratios β and radiative lifetimes τ_{rad} of Tm³⁺ were calculated based on the Judd-Ofelt theory, and the upconversion luminescence of Tm³⁺ for glass sample with different Yb³⁺ doping concentration was measured. The results show that the glass sample can emit strong near-infrared upconversion emission under the excitation of 980nm pump light. The analysis of Tm³⁺ upconversion emission process reveals that the intense near-infrared upconversion luminescence of Tm³⁺ ions is mainly ascribed to the result of energy transfers: first the resonant energy transfer from Yb³⁺ to Yb³⁺ ions, and then followed by one and two phonon-assisted nonresonant energy transfer from Yb³⁺ to Tm³⁺ ions. The energy transfer coefficient and phonon contribution for the above energy transfer process were calculated. Furthermore, the 1.8µm band absorption, emission cross-sections and gain coefficient of Tm³⁺ : ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ transitions were calculated and analyzed. The research indicates that Yb³⁺/Tm³⁺ codoped TeO₂-ZnO-Na₂O glass is a promising host material applied for near-infrared band solid laser. Key words: Tellurite glasses; Tm³⁺/Yb³⁺ codoping; Energy transfer; Upconversion emission